展会新闻
  • 探索改性PP与POE聚烯烃弹性体:给您带来的全新应用视角!

    聚丙烯(PP)是丙烯加聚反应而成的聚合物,是一种半结晶的热塑性塑料,系白色蜡状材料,外观透明而轻,具有耐化学性、耐热性、电绝缘性、高强度机械性能和良好的高耐磨加工性能等。聚丙烯应用领域广泛,特别是在汽车工业中,已成为汽车塑料中用量*大的种类之一,但PP对缺口的敏感性,导致其缺口冲击强度较低,因此,对PP增韧改性一直是热门的研究课题之一。而今天我们要介绍的这种材料,能优秀的解决这一问题!POE聚烯烃弹性体聚烯烃弹性体(POE PolyolefinElastomer)是Dow化学公司于1994年采用“限制几何构型”催化剂及相关的Insite**技术(CGCT)合成的乙烯一辛烯共聚物,其辛烯含量>20wt%。在乙烯分子中引入辛烯分子后的共聚物辛烯含量在20%-30%,其弹性比TPO更好,低温延性比EPDM和EVA(乙烯一乙酸乙烯共聚物)更好。它的主要特点为:良好的加工性、具高剪切速度依存性、易操作使用性、产品均匀为颗粒状、分子量分布窄、低分子量成分少、无粘缠性、无恶臭、透明性优:比重0. 86-0. 91,质轻:分散性良好,适于作树脂改性剂,采用POE增韧改性PP成为实践中普遍采用的改性方法。而我们又可以将其分为乙烯基POE与丙烯基POE两种进行探讨。乙烯基POE性能特点以陶氏的乙烯基POE EnggaePOE 为例:(1)辛烯的柔软链卷曲和结晶的乙烯链作为物理交联点,使它既有优异的韧性又有良好的加工性。(2)POE分子结构中没有不饱和键,具有优良的耐老化性能。(3)POE分子量分布窄,具有较好的流动性,与聚烯烃相容性好。(4)良好的流动性可改善填料的分散效果,同时也可提高制品的熔接痕强度。丙烯基POE性能特点以埃克森美孚的丙烯基POE Vistamaxx 为例:(1)其丙烯质量分数在70%以上,组成与结晶性介于无定型的乙丙橡胶与结晶性的聚丙烯之间,是一种柔软且有弹性的聚烯烃材料。(2)乙烯单元有效地破坏了聚丙烯的链段规整性.使共聚物分子链的柔顺性增加:Vistamaxx是一种透明性高、力学性能优异的弹性体材料。(3)结晶具有聚丙烯a一型晶体结构特点,分子链中较短的链段可以在室温以下结晶表现出二次结晶现象。同时,其结晶度很小且结晶不完善。丙烯基弹性体晶态分布技术概况当前POE的工艺技术以陶氏化学开发的Insite溶液法聚合工艺以及埃克森美孚开发的Exxpol高压聚合技术为主。其他生产企业有:日本三井、韩国LG、韩国SK等。POE与EPDM比较EPDM分子主链为饱和结构故呈现出卓越的耐候性、耐臭氧性及化学稳定性。EPDM凭借这些优异性能已成为高分子领域不可缺少的材料。虽然EPDM对聚丙烯(PP)有良好的增韧效果,但EPDM价格高,碎胶有一定的困难,流动性也不太理想;而采用美国DOW化学公司利用茂金属催化剂催化乙烯与辛烯原位聚合获得的POE作为PP的抗冲击改性剂,材料的耐热温度提高,永久变形减小,拉伸强度、撕裂强度等主要的力学性能都有很大程度的提高。POE的分子主链结构与EPDM类似,也为饱和结构。由于采用了限定几何构型技术,可人为地控制POE的分子支链;茂金属催化剂使得POE又具有窄的相对分子质量分布。因而,POE具有EPDM优异的性能,同时某些性能超过了EPDM,在将来,POE可作为EPDM的替代材料使用。POE用作PP的抗冲击改性剂,与传统使用的EPDM相比,有明显的优势:(1)粒状POE易与粒状的PP混合,省去块状EPDM复杂的造粒或预混工序;(2)POE与PP有更好的混合分散效果,与EPDM相比,共混物的相态更为细微化,因而使抗冲击性得以提高;(3)采用一般橡胶作为PP的抗冲击改性剂,在提高冲击强度的同时,降低了产品屈服强度,而使用POE在增韧的同时,仍可保持较高的屈服强度及流动性。POE在PP改性中的应用PP具有密度小、拉伸强度高、硬度高、屈服强度较高、热变形温度高等优点,且易加工,价格低廉,广泛应用于各个领域。但PP材料缺口冲击强度低,低温脆性尤为突出,使其应用受到限制,通过与弹性体共混来改善PP冲击性能是目前*广泛采用的方法。为优化PP性能,国内外都进行了大量的PP增韧改性研究,在多相共聚和共混改性方面取得了突破性进展。相比而言,共混改性简单易行,倍受青睐。PP常采用的冲击改性材料有EPR、EPDM、LDPE、EVA、SEBS、POE、聚丁二烯-1、丁苯胶、顺丁胶等。其中以EPDM、LDPE、POE及SEBS*常用,加入量一般为10%左右。POE以优异的性能以及与聚烯烃良好的亲和性,与PP组成的POE/PP体系,广泛应用于汽车工业。

    查看更多>>
  • 二十一种常用塑料物性和成型性能汇总!

    在塑料选型、研发和制造的过程中,基材的基本性能会在很大程度上影响塑料的合理应用。本文为大家整理了21种塑料的性能,以供参考。ABS塑料英文名称:Acrylonitrile Butadiene Styrene(丙烯腈-丁二烯-苯乙烯)    比重:1.05克/立方厘米成型收缩率:0.4-0.7%成型温度:200-240℃干燥条件:80-90℃ 2小时    PS塑料英文名称:Polystyrene(聚苯乙烯)   比重:1.05克/立方厘米成型收缩率:0.6-0.8%成型温度:170-250℃干燥条件:---    PMMA塑料(有机玻璃)英文名称:Polymethyl Methacrylate(聚甲基丙烯酸甲脂)比重:1.18克/立方厘米成型收缩率:0.5-0.7%成型温度:160-230℃干燥条件:70-90℃  4小时    POM塑料英文名称:Polyoxymethylene(Polyformaldehyde) (聚甲醛)比重:1.41-1.43克/立方厘米成型收缩率:1.2-3.0%成型温度:170-200℃干燥条件:80-90℃  2小时    PP塑料英文名称:Polypropylene(聚丙烯)    比重:0.9-0.91克/立方厘米成型收缩率:1.0-2.5%成型温度:160-220℃干燥条件:---    PE塑料英文名称:Polyethylene    (聚乙烯)    比重:0.94-0.96克/立方厘米成型收缩率:1.5-3.6%成型温度:140-220℃干燥条件:---    PVC  英文名称:Poly(Vinyl Chloride)聚氯乙烯    比重:1.38克/立方厘米成型收缩率:0.6-1.5%成型温度:160-190℃干燥条件:---    PA塑料(尼龙)    英文名称:Polyamide(聚酰胺)    比重:PA6-1.14克/立方厘米;PA66-1.15克/立方厘米;PA1010-1.05克/立方厘米成型收缩率:PA6-0.8-2.5%;PA66-1.5-2.2%成型温度:220-300℃干燥条件:100-110℃  12小时    PC塑料英文名称:Polycarbonate(聚碳酸脂)    比重:1.18-1.20克/立方厘米成型收缩率:0.5-0.8%成型温度:230-320℃干燥条件:110-120℃  8小时    PPO塑料(MPPO)英文名称:poly(phenylene oxide) (聚苯醚)    比重:1.07克/立方厘米成型收缩率:0.3-0.8%成型温度:260-290℃干燥条件:130℃  4小时    PSU塑料英文名称:Polysulfone(聚砜)    比重:1.25-1.35克/立方厘米成型收缩率:0.5-0.7%成型温度:290-350℃干燥条件:130-150℃  4小时    PTFE塑料(F4)英文名称:Polytetrafluoro ethylene(聚四氟乙烯)   比重:2.1-2.2克/立方厘米成型收缩率:3.1-7.7%成型温度:330-380℃干燥条件:--    ASA塑料英文名称:Acrylonitrile Styrene acrylate copolymer (丙烯酸-苯乙烯-丙烯睛)    比重:1.05克/立方厘米成型收缩率:0.4-0.7%成型温度:170-230℃干燥条件:80-90℃  2小时    PPS塑料  英文名称:Phenylene sulfide(聚苯硫醚)    比重:1.36克/立方厘米成型收缩率:0.7%成型温度:300-330℃干燥条件:---    ETFE塑料英文名称:Polytetrafluoro ethylene    (聚四氟乙烯-乙烯共聚物)    比重:1.7克/立方厘米成型收缩率:3.1-7.7%成型温度:300-330℃干燥条件:---    PFA塑料英文名称:Polytetrafluoro ethylene    (可溶性聚四氟乙烯)    比重:2.13-2.167克/立方厘米成型收缩率:3.1-7.7%成型温度:350-400℃干燥条件:---    PAR塑料(U塑料)英文名称: Polyarylate(聚芳脂)    比重:1.2-1.26克/立方厘米成型收缩率:0.8%成型温度:300-350℃干燥条件:100~120℃-5小时    酚醛塑料英文名称:Phenol-Formaldehyde(PF)    比重:1.5-2.0克/立方厘米成型收缩率:0.5-1.0%成型温度:150-170℃    氨基塑料英文名称:MF,UF    比重:1.5克/立方厘米成型收缩率:0.6-1.0%成型温度:160-180℃    环氧树脂(EP)英文名称:Epoxide Resin    比重:1.9克/立方厘米成型收缩率:0.5%成型温度:140-170℃    有机硅塑料(IS)英文名称:Silicone比重:1.75-1.95克/立方厘米成型收缩率:0.5%成型温度:160-180℃    

    查看更多>>
  • 前三季度化学原料和制品制造业利润总额同比下降46.5%

    国家统计局10月27日公布的数据显示,前三季度,随着市场需求持续改善,工业生产平稳增长,工业企业营收利润持续恢复向好。1—9月份,全国规模以上工业企业实现利润总额54119.9亿元,同比下降9.0%,降幅比1—8月份收窄2.7个百分点。其中,化学原料和化学制品制造业利润总额同比下降46.5%。数据显示,1—9月份,采矿业实现利润总额9928.1亿元,同比下降19.9%;制造业实现利润总额38910.7亿元,下降10.1%;电力、热力、燃气及水生产和供应业实现利润总额5281.1亿元,增长38.7%。前三季度主要行业利润情况如下:电力、热力生产和供应业利润总额同比增长50.0%,电气机械和器材制造业增长24.9%,通用设备制造业增长11.0%,专用设备制造业增长2.4%,汽车制造业增长0.1%,黑色金属冶炼和压延加工业下降1.8%,石油和天然气开采业下降9.4%,纺织业下降10.2%,农副食品加工业下降15.1%,有色金属冶炼和压延加工业下降15.1%,计算机、通信和其他电子设备制造业下降18.6%,煤炭开采和洗选业下降26.5%,非金属矿物制品业下降26.7%,石油、煤炭及其他燃料加工业下降40.4%,化学原料和化学制品制造业下降46.5%。1—9月份,规模以上工业企业实现营业收入96.35万亿元,同比持平;发生营业成本81.96万亿元,增长0.3%;营业收入利润率为5.62%,同比下降0.55个百分点。9月末,规模以上工业企业资产总计164.40万亿元,同比增长6.4%;负债合计94.63万亿元,增长6.7%;所有者权益合计69.77万亿元,增长6.0%;资产负债率为57.6%,同比上升0.2个百分点。9月末,规模以上工业企业应收账款23.75万亿元,同比增长9.7%;产成品存货6.13万亿元,增长3.1%。数据显示,1—9月份,规模以上工业企业每百元营业收入中的成本为85.07元,同比增加0.30元;每百元营业收入中的费用为8.34元,同比增加0.28元。9月末,规模以上工业企业每百元资产实现的营业收入为80.1元,同比减少5.8元;人均营业收入为177.4万元,同比增加6.0万元;产成品存货周转天数为20.0天,同比增加1.2天;应收账款平均回收期为63.0天,同比增加5.9天。9月份,规模以上工业企业实现利润同比增长11.9%。

    查看更多>>
  • 不同成核剂对PLA材料的力学性能的影响

    聚乳酸(PLA)是目前产业化程度较高的生物基聚合物,其具有良好的加工性能、生物可降解性与生物相容性,因此PLA纤维也被认为是*具发展前景的“绿色环保”纤维之一,在服装家纺、医疗卫生、产业用纺织品等领域具有广泛的应用前景。添加成核剂是改善PLA结晶性能有效的方法,成核剂的加入能够促进高分子的异相成核,增加晶体生长点,提高结晶速率。Part.1无机成核剂滑石粉(Talc)是一种高效的矿物类无机成核剂,具有易于在PLA基体中分散的优点,少量的Talc可以吸附在PLA表面发挥成核作用,加快PLA的结晶速率。Talc呈片层状形态,其平均粒径为12.4 μm对添加量为1、2、4、8wt%的PLA进行研究,由于添加量少,添加后对PLA密度无显著影响。添加Talc可以提高复合材料的缺口冲击强度,但对拉伸和弯曲性能没有显著提高,随着Talc添加量超过1wt%,PLA基复合材料的拉伸强度、断裂伸长率和弯曲强度均明显下降。Part.2有机成核剂与无机成核剂相比,有机成核剂添加量少、成核效率高。酰肼类化合物例如TMC可以显著提高PLA的结晶速率和结晶度,诱导PLA在成核剂微晶表面取向附生,使PLA形成锥状、串状和针状晶体形貌。TMC-300呈棒状形态,其平均粒径为11.7 μm对TMC-300添加量为0.3、0.5、1、2wt%的PLA进行研究,由于成核剂添加量较少,添加后对PLA密度无明显影响。添加TMC-300显著提高了材料的缺口冲击强度,但对拉伸模量和弯曲模量没有明显改善。添加0.5wt% TMC-300时,复合材料的缺口冲击强度、拉伸强度和断裂伸长率较优。Part.3生物基成核剂近年来,生物基成核剂因其可再生、可降解、来源广泛等优点而逐渐受到关注,目前已有淀粉、纤维素、木质素(WF)等被应用于PLA成核改性。研究发现淀粉可以提高PLA的结晶度,降低PLA的半结晶时间。纤维素也可用作PLA的成核剂,添加具有良好分散性的纤维素能显著加快PLA的结晶速率,大大提高PLA模塑成型生产效率。木质素也能促进PLA成核,成核效率约为30%。从目前研究来看,淀粉、纤维素和木质素等生物基成核剂不仅能够保持PLA的可降解特性,而且能够促进PLA的异相成核和提高结晶速率。WF呈纤维状,长度主要分布在0.25-2 mm(占比69%),直径主要分布在0.05-0.32 mm(占比80%)对WF添加量为0.5、1、2、4wt%的PLA进行研究,由于其添加量较少,对PLA密度无显著影响。添加少量WF(0.5wt%和1wt%)能显著提高材料的各项力学性能,当WF添加量为1wt%时,PLA基复合材料的断裂伸长率、拉伸强度、弯曲强度与纯PLA相比分别提高了27%、17%和18%,拉伸模量和弯曲模量与纯PLA相比分别提高了14%和7%;但当WF添加量高于1wt%时,材料的拉伸强度、断裂伸长率和弯曲强度有所下降。

    查看更多>>
  • 塑件玻纤外露的原因和解决方法分析

    一直以来,为了提高产品的强度和耐温性等性能,使用玻纤来对塑料进行增强改性成了一个非常不错的选择。大量事实也证明了玻纤所带来的良好性能。但是,玻纤与塑料本身就是两种不同的材料,自然也就产生了二者的相容性问题。玻纤外露(或叫浮纤)就是二者相容性问题的直接体现。而玻纤外露也是加纤材料注塑加工过程中经常碰到且困扰诸多朋友们的一个问题。 那么玻纤外露究竟是怎么产生的呢?简而言之,从玻纤的形态上来说玻纤有长纤和短纤之分,是一束一束的,是白色的。加纤料就是将玻纤和树脂共混造粒而成的。 在射胶的时候,料的流动是类似于液体的流动方式。大家应该看过河流里面,在河流里有一些树枝等杂物时,经常会在沿岸边有一些这类依附河岸而停留。如果在注塑中,就是玻纤外露。这是因为玻纤相对于塑料的流动性要差很多,而塑料在模具中的流动是从夹层中间往前流,俩边往外翻动的方式流动的,所以流动性*好的肯定是跑到*前面,而流动性不好的就会停留在模具表面。同时,玻纤有促进结晶的作用,而PP、PA都属于结晶性材料。结晶快冷却就快;冷却快,玻纤就难以被树脂束缚和掩盖住,那么就容易产生玻纤外露。目前通常的解决办法主要有以下几种:一、材料方面: 1、考虑玻璃纤维和基体的相容性,对玻纤进行表面处理,如加入一些偶联剂和接枝物; 2、加入润滑剂,润滑剂主要是考虑到玻纤的分散问题以及一些润滑剂本身具有外润滑作用,在成型时候容易跑到制品表面来形成光滑的一层。 3、还有其他一些填充剂也有改善的效果,这里就不再一一列举。 二、注塑加工方面: 1、提高料温和模温; 2、高压高速; 3、采用快速冷热成型技术(RHCM)。因为如果熔融塑料在接触模壁时固化太快,玻璃纤维就无法被完全包覆,即产生表面浮纤现象。而对于RHCM成型,由于高模温使得型腔界面处玻璃纤维完全可以被塑料熔体包覆,且由于该部位处于熔融状态,使得玻璃纤维的定向趋于一致,保证了收缩均匀性,进而保证了成型品质。 三、模具方面 将产品外观面刻意做成亚光面或蚀纹面,减少玻纤外露的视觉反应。目前,市面上使用加纤材料*多的就是尼龙加纤材料。由于玻纤外露,使得此类产品的应用受到了一定的限制,目前主要应用于一些高强度的结构件。而凡是用加纤材料做外观件的,基本上都是亚光面或蚀纹面(例如电动工具),因为普通加纤料难以做到亮丽的外观。

    查看更多>>
  • 政策当前,都在开始使用PCR了?先给这八个问题找到答案

    消除环境中的塑料废物对于我们地球的健康和我们行业的健康至关重要。循环性正在随着减重和轻量化而不断进步,塑料加工商正在与品牌所有者合作,重新设计包装以实现可回收性,并在生产中加入消费后树脂 (PCR) 和其他回收成分。当您开始接触PCR时,请尽可能多地了解当今可用的PCR。随着我们不断推动再生塑料质量和数量的提高,了解使用再生树脂时的预期至关重要。它将使您更有信心并提高您将这种可持续材料融入新产品的成功率。这里有八个问题,它们的答案将帮助您走上正轨。一致的沉淀颜色和大小、低气味和少污染都是高质量 PCR 的指标。 使用PCR与PIR和返工有何不同?PCR被定义为已达到其既定用途的塑料。在其预定用途后,将其收集、清洁并重新造粒,以用于新的塑料制品或包装。另一方面,后工业 (PIR) 树脂通常是已转化为不符合规格或无法销售的产品的树脂,因此从未到达客户或消费者手中。该产品仍然可以从垃圾填埋场收集和转移,并用于新产品或包装。返工是制造过程中产生的废物,可在同一过程中重复使用,而不是出售给其他制造商。使用返工作为原料的能力被认为是制造中的*佳实践。这种树脂的质量非常接近原始树脂,因为它只经历了一次额外的加热或加工历史。例如,吹塑成型的尖端和尾部、注塑成型的流道以及薄膜或片材生产的边缘修剪。返工被认为与PCR和PIR不同,因为它在创建它的同**程中重复使用。因此,它不被视为回收产品。产品必须设计为可回收或升级改造,而不是降级回收或填埋;为了完全闭合循环,其中的材料必须重新融入到新产品中。PCR是价值链中大多数参与者的主要关注点,将其重新纳入新产品和包装对于循环性至关重要。  该植物性食品袋原型由 Nova 制作,PCR 含量为 20%。PCR 树脂应具有哪些特性和加工性能?熔体指数 (MI)、熔体流动比 (MFR) 和密度是每批 PCR 都应具备的基本特性。由于PCR通常用作共混组分,因此这些特性会影响共混兼容性,进而影响整体性能。对于PE-PCR,复杂的流变曲线更常用于原始树脂,但了解LLDPE PCR中是否存在LDPE对于预测加工过程中的剪切稀化行为和熔体强度非常重要。虽然很难量化特定批次LLDPE PCR中的LDPE水平,但了解它是否存在于进入的回收塑料流中是一个良好的开端。PCR 的加工性能可能会受到污染物的影响,尤其是当污染物在PE挤出温度下不熔化时。PET就是一个很好的例子,因为其较高的熔体温度会导致挤出机筛网组堵塞,增加背压并可能导致停机。纤维素或木纤维等外来污染物也会导致过滤网堆积。一个经验是,您的PCR供应商应使用比挤出设备上使用的过滤更细一级的网状过滤。这将确保大多数污染物在加工过程中被过滤掉,并且不会导致挤出机出现加工问题。分子量分布的宽度可以通过 MFR 来近似,并且是加工性能的良好指示。数字越大,通常表示越容易加工。如果存在滑石粉或碳酸钙等矿物填料,产品数据表中报告的密度可能会高于实际基础聚合物密度。矿物填料的存在可以通过灰分测试来确定,粗略的经验法则是,每1%的灰分含量,密度将变化约0.01g/cc,然后可以从中计算出真正的PCR密度。您应该在 PCR 中寻找什么,以确保*佳质量的成品?一致的沉淀颜色和大小、低气味和*小的污染都是高质量PCR的指标。MI的一致性将推动PCR处理的一致性,受到改性商的高度追捧。在供应方面,这一问题正在通过控制采购、材料分类和混合来解决。混合可以发生在输送以及*终的PCR颗粒上,以实现更高程度的均质化。混合筒仓以及高度的测试和监控可以让回收商提供一致的 MI,甚至可以与宽规格原始树脂 (±30%) 相媲美。此外,尝试从与预期*终用途相同或相似的来源中获取PCR也是有帮助的——这称为“同类”回收。对于收缩膜等柔性薄膜,寻求从商店后台或配送中心薄膜,甚至农用薄膜等薄膜来源获取PCR,将确保其特性与置换的原始内容更相似,从而更多理想的。这种一致性促使许多人研究闭环机会,即收集特定的包装或物品以将其重新整合到同一类型的产品中。同样,目前食品接触应用的*佳PCR来源是在第一生命周期中可直接追溯到食品接触应用的类型,即使形状不同。一个典型的例子是从牛奶罐中回收的HDPE。由于这一来源受到高度追捧且供应短缺,我们看到MI不匹配和均聚物密度等问题正在柔性薄膜、瓶盖和封闭件等多种*终用途中得到克服。从采用相同转化过程生产的产品中获取PCR是另一个策略。与流延薄膜相比,吹膜挤出生产的回收材料更容易重新融入吹塑薄膜,后者需要更高的熔体指数。注塑成型也是如此,它需要更高的MI,因此从吹塑成型制品收集的回料会带来加工挑战。此类应用中的收缩膜的 PCR 含量高达 40%。使用 PCR 时,您应该预期性能的多大折扣?一般来说,高质量PCR树脂的特性与类似性能的同等级材料差不多,并且对成品性能的影响极小,尤其是采用正确的产品设计方法时。当然,为了保持性能,物流必须完全不受污染,尤其是来自PP和PET等聚合物的污染。尽管PP在PE的挤出温度下会熔化,但它会影响*终部件的冲击性能,这对于许多刚性制品尤其重要。将含有PCR成分的制品或薄膜与100%原生成分制成的制品的物理性能进行比较的第一步是确保您选择正确的树脂以进行公平的比较。*好将PCR的性能与具有相似MI和密度的原始树脂进行比较。只要PCR质量高且无污染,物理性质保留就可以相当好。由于大多数PCR被用作共混组分,因此也可以考虑更改组合物中的其他树脂,以克服性能的轻微下降。使用更高性能的原始树脂或专门配制来补偿PCR特性的树脂也可以产生不影响性能的产品。例如,如果MD撕裂性能因PCR的加入而受到影响,则可以使用高抗撕裂原始树脂来补偿性能损失。如何知道PCR树脂是否具有足够的稳定性?请务必询问您的供应商配方中是否包含额外的抗氧化剂 (AO)。测试添加剂的存在和消耗相对容易,并且能够帮助确定PCR来源中是否有足够的稳定性。通过与树脂供应商和加工商的合作,回收商开始了解额外稳定性的价值。交联是树脂稳定性不足的常见结果,它会降低MI并使加工更加困难。PCR供应商在生产过程中添加额外的AO是理想的选择,可以在至少第三次受热过程中保护树脂,以确保发生*小程度的降解并保留MI。是否有减少PCR常见气味的策略?大多数塑料加工商报告说,PCR 比原生塑料有更多气味。优秀的PCR供应商会在回收过程的早期解决气味问题。在清洗步骤中去除纸质标签和纤维素/有机污染物至关重要,以防止颗粒在挤出过程中炭化。脱挥发分是一些回收商进行的额外步骤,用于去除挥发性有机化合物,可以显著减少气味。除臭添加剂也可用于改善气味。询问您的供应商他们的流程中是否包含这些步骤。如何知道再生树脂是否符合您的应用的特殊标准?如果您有特殊标准,例如缺席声明、加州65号提案、包装毒素信息交换中心 (TPCH) 或食品接触声明,您必须与供应商合作来满足这些需求。随着品牌所有者努力实现包装可持续发展目标,食品接触PCR的需求特别高。全球范围内,食品接触应用中PCR使用的监管方式存在差异。在美国和加拿大,PCR材料必须满足与原始材料相同的所有法律要求。美国食品药品监督管理局(FDA)和加拿大保健品及食品部门(HPFB)将审查回收过程和材料来源,然后发出不反对函(LNO或LONO),关于用于生产食品接触应用材料的回收过程的意见,并将包括*终PCR的食品类型或使用限制。然而,LNO只是为了符合食品接触要求而必须满足的一项标准。为了从监管角度考虑适合*终应用PCR通常会经过额外的测试并获得额外的监管声明。欧盟也有类似的方法,但也要求仅回收食品接触材料以用于食品接触应用。与FDA和HPFB类似,欧洲食品安全局 (EFSA) 将审查回收流程,以评估其生产食品接触PCR的适用性。然而,迄今为止,仅针对rPET发表了意见。预计这种情况可能会随着欧盟*近推动制定将塑料纳入循环经济的综合战略而改变。如何确定可在产品或包装设计中使用的*大PCR含量?探索可以将多少PCR纳入您的产品设计中是应用开发的关键组成部分,应通过试验评估和建模根据具体情况确定。*终的PCR含量可能取决于杂质的水平、物理性能保留和美观程度的需求。对于清洁度和结晶水平,请向您的供应商询问其清洁步骤和熔体过滤功能。如前所述,为了保持物理性能,匹配密度很重要。如果这很难,请考虑采取其他措施来抵消由此产生的性能变化。关于美学,我们的建议是拥抱丑陋!PCR看起来非常好,但即使在生产过程中非常小心,也不太可能看起来与原始树脂相同。让不同的审美开始讲述故事,让消费者了解PCR正在您的产品设计中使用——可持续发展的信息是推动循环经济增长的关键组成部分!生产的垃圾袋和罐内衬的PCR含量高达70%以上。我们发现目前某些企业生产的罐内衬的PCR水平已超过70%,收缩膜的PCR水平约为40%。对于有严格要求的更敏感的应用,从较低的剂量(例如10%)开始,在瞄准更高的负载之前建立信心和经验是一个很好的策略。更高的负载将受到所需零件性能和/或美观的限制。将PCR埋入多层结构的核心层可以在一定程度上帮助克服PCR的美观性,并且依靠高性能混合成分可以抵消物理性能的下降。来源:链塑网免责声明:部分资料来源于网络,转载的目的在于传递更多信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅供交流,不为其版权负责。如涉版权,请联系我们及时修改或删除。

    查看更多>>
联系方式

地址:上海市沈砖公路5666号恒耀广场B栋18F

电话:021-5227 0816

邮箱:jihua@jihuaexpo.com